

JIANGSU HI - GAO THERMAL CONTROL TECHNOLOGY CO., LTD

http://www.tzrigao.com

Calculation Method for the Selection of Industrial Electrical Cabinet Air - Conditioners-1

1. Selection of Cabinet Air - Conditioners

- Qt = Qi + Qr
- Q t: The total heat generated by the cabinet (Unit: W)
- Q i: Total heat from the cabinet interior equipment. (Unit: W)
- Q r: The heat transferred from outside the cabinet to the inside. (Unit: W)
- Q r = Kx A X Δ T
 - k: Heat transfer coefficient
 - A: The surface area of the cabinet (Unit: m^2) $\Delta T=T1-T2$ (Unit: $^{\circ}$ C)

T1:Maximum temperature outside the cabinet T2:The controlled temperature inside the cabinet The heat - transfer coefficients of the main materials are as follows.:

- ◆ 1) \ k=5.5W/ m² .K ----Steel material cabinets
- ◆ 2) 、 k=12.0W/ m² .K--- Cabinets Made of Aluminum Magnesium Alloy
- ◆ 3) \ k=0.2W/ m² .K -----Plastic cabinet
- ♦ 4) \ k=1.5 / m² .K----- Asbestos

Calculation Method for the Selection of Industrial Electrical Cabinet Air - Conditioners-2

Precautions for Model Selection:

For outdoor cabinets, if considering dustproof, waterproof and antitheft, choose outdoor - specific cabinet air conditioners.

The layout of the air conditioner should refer to the equipment distribution map.

In principle: For the same cooling capacity, multiple units are better than a single unit.

Observe the structure of the cabinet. Check whether the outer shell is sealed, whether there is a partition inside, and whether there is a circulation space for air.

e.g. The external dimensions of a steel - material cabinet are as follows: Length × Height × Thickness: 800mm × 1000mm × 500mm

- •The heat generating components inside the cabinet produce 650W of heat.
- •The cabinet inner control temperature is 29 °C, outside is 36 °C.
- •Calculate: The surface area of the cabinet: A=0.8*2*2+0.5*2*2+0.5*0.8=5.6m².
- •The heat transferred from outside to inside the cabinet: $Qr=k^*A^*\Delta T=5.5^*5.6^*$ (36-29) =138.4W
- •The total heat generated by the cabinet: Qt=Qi+Qr=650+138.4=788.4W
- Therefore, choose the cabinet air conditioner of model DKC08 (with a cooling capacity of 800W).

Calculation Method for the Selection of Industrial Electrical Cabinet Air—Industrial power distribution cabinet

Qi: The empirical formula to calculate the total heat from the equipment inside the cabinet. (Unit: W)

- Heat Generation of Frequency Converter, Driver, Servo Amplifier, Industrial Control Computer:
 The efficiency of these devices is generally 97%, 3% of the loss is eventually converted into thermal energy.

 Therefore, the heat generation of such devices can be estimated as = Total Device Power × 3%.
- For large scale transformers, the heat generation can be estimated at around 1% 1.5% of the transformer capacity.
 (Attention: KVA means KW)
- 3. The heat generation of a soft starter is about 1% of its starting power.
- 4. Others: Heat generation of a common server: about 150W 300W per unit; Heat generation of a UPS: 30% of its power.
- The heat generation of components such as
 PLCs, circuit breakers, and contactors is relatively small.
 A group has a heat generation of about 30W 50W.
 (It can be neglected.)

